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An Improvement of the Griffiths—Hurst—Sherman
Inequality for the Ising Ferromagnet

Ross Graham'%>

Received March 11, 1982

We prove the following inequality for the truncated correlation in the Ising
model in zero external field:

<°i‘7j0k01> - <0.-0j><0k01> - <Ui0k><‘7j°1> - <Uf°1><0j°k>
< —2%0;0,,){0;0,,7{0,0,,){0,0,,)
—2({ai00> — <0i°m><0m0k>)(<'7j0k> - <0j°m><0m°k>)<°k°1>
= 2(0;0,,)<0;0,,)({0;0;) = 0;0,,)£8,,0,))({0;0) ~ 0;0,,)<0,,01))

This inequality is a strengthening of the Lebowitz inequality for the four-point
function and implies the following improvement of the GHS inequality:

05305 00T < =205 0,005 6> T
This in turn implies the critical exponent inequality
4> -8

KEY WORDS: Correlation inequalities; Ising model.

1. INTRODUCTION

We consider an Ising model with spins o, = =1 on sites i =1, ..., N and
Hamiltonian
-H= 3> J;0,0; (IL.D)
I<i<j<N
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with J;; > 0. The partition function

=L S e

P
where B is the inverse temperature and expectations are defined by
1 —
(=g I (e Pz (12)

Our main result is the following.
Theorem 1. LetJ; > 0 in (1.1). Then for all m
<‘7i0j0k°1> - <0,-0j><°k°1> - <0i°k><°j"l> - <Ui01><°j°k>
—20;0,,€0;0,,)< 0,0, 00,.,)
_2(<°i‘7k> - <°i°m><0m0k>)(<°j°k> - <°j°m><°m°k>)<0k°1>
—2(0;0,,){0;0,,)({0;0;) ~ £0,0,,){5,,0,))({0;0,) = {,0,,{0,,0,)
(1.3)

Remark. Above the critical temperature, the expression {o;0,0,0,)
~ {0;0,){0,.0,) — {0,0,,)<0,0,) — {0,6,){0;0; is the fourth Ursell functlon
or truncated four-point functlon Alzenman has recently shown‘? that

<0i°j0k°l> - <0i0j><0kal> - <aiak><0jol> - <Ui"1><0j°k>
> =230, 50,00, 010,

and used this result to show that in greater than four dimensions hyperscal-
ing does not hold for the Ising model, and the continuum limit of ¢* lattice
models is a free field. Theorem 1 provides the complementary bound

<°i°j°k°1> - <0i°j><°k°1> - <0iok><ojol> — {0,0,{0,0)
< ““2<Ui°m><0j‘7m><°k°m><°1°m> (L4)
The relation of (1.4) to Aizenman’s inequality is similar to the relation
of Griffiths inequality® {(g,0,> > {g;0,>{0,0,> to Simon’s inequality™”
{00y < 3k ek<0,0;{0,0;), where K 1s a set of sites that separates j from /.
I am grateful to Alan Sokal for suggesting (1.4) to me.

Theorem 1 implies improvements of several known inequalities. Tak-
ing m to be Griffiths “ghost” spin® we get the following.

Corollary 1. Consider an Ising model with Hamiltonian

N
-H= 3 J,o0+ E:l ho;,

1<i<j<N
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where J; > 0, h; > 0. We have
<°;0j0k01> - <0i0j><°k°1> - <‘7i“k><°jf’1> - <0101><0j0k>
< = X0,X0{0, <o) — 2{(0;; 6,) {5} 0,y o, 07
ACRCYCH AR

where by definition {o;; 0,>7 = (0,6,> — {0;5{0; ). Corollary 1 strengthens
the Lebowitz inequality for the four-point function.(-®

If we take m = [ in (1.3) we get the following.
Corollary 2. Let J; > 0 in (1.1). Then
0;0,0,0,) — £0,0,)<0,0,) = 0,0, ){0;0,> — {0,0,){0;0,
< —2(0,0,)0;0,){ 0,6,
"2(<Ui0k> - <“i°1><°10k>)(<°j0k> - <0j01><°1°k>)<°k°1> (1-5)
This strengthens a result of GHS.(7

If in (1.5) we now let / be the “ghost” spin we have the following
improvement of the GHS inequality.(”

Corollary 3. Consider an Ising model with Hamiltonian

[/}

N
—H= 2 J--ooj+ 2 h.o;
1<i<j<N i=1

where J;; > 0, 2, > 0. We have

{0;5 053 o>’ < —2{o; 0k>T<°j§ o> <0y (1.6)
As usual (030507 = (6,0,0,> — (5,5{0,0,> — (6,)(0,0,> — (0, ){0,0,> +
20,05 0)-

We now investigate some of the consequences of Corollary 3. Consider
an Ising model in a uniform positive external field 4, and let m, (k) denote
the magnetization at site k. If we sum (1.6) over / and j we have

my () dm, (h)
ah? [ dh

By the “fluctuation-dissipation” relations* we have in the thermody-
namic limit

]zmk(h) <0

Fm o 9m \?

4 For full justification of the fluctuation-dissipation relations, sce for example, Sokal.(® Other
treatments are given by Fisher,(® Sylvester,(!® and Lebowitz.(')
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(1.7) may be integrated twice to yield the following implicit bound on
m(h) in terms of my = lim,_,,, m(h) and x, = lim,,_,o, (3m/3h)(h).

Theorem 2. Let m(%) denote the magnetization of an infinite volume
Ising model in a uniform magnetic field 2 > 0. We have

fm(h)ey ‘dy< e ool (1.8)

my

Proof. Since dm/dh is positive we can write (1.7) as

d (jpdm | 2 ich impli Im 4 2o 2
7 (ln Py +m ) < 0 which implies 1In YA +m* <Inyy+ mg
Exponentiating and integrating from 0 to » we get (1.7) B

(1.7) also implies a critical exponent inequality. Writing f(x)~x" to
mean lim__, , [log f(x)/logx] exists and equals A we assume for 8 > 8.
(T < T,) and h =0+ (the plus state) that M~(8 — B,)*

W (B~ B

(1.9)
Fm BTN
‘W ~(B-8.)

(The exponent B is not to be confused with the inverse temperature 8.) See
Stanley‘'? or Sokal® for more complete lists of critical exponents.
(1.9) together with (1.7) imply immediately the following.

Theorem 3. Let 8, ¥’ and A} be defined as in (1.9). Then
A>y =8 (1.10)

Remark. (1.10) may also be written A; > A) — 28. Numerical studies
for the two-dimensional Ising model indicate A;~ 15/8, A5~ 15/8 while
B=1/8 is a rigorous result.'"® Hence in this case (1.10) reduces to
15/8 > 13/8.

2. PROOF OF THEOREM 1

Without loss, we set 8 = 1. The proof is based on graphical methods.
We refer the reader to Ref. 14 for notation and the proof of the following
lemma.
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Lemma 1. LetJ; > 0 in (1.1). Then
(C(k)ZOL{jik}, (hd })(®)
>(C(k)Z0[{).k},)(C(k) 2 0[{k.1},9)
The other ingredient we will need is the following result of GHS [7].

Lemma 2. Let V| and V, be sets of sites. Then

> wodwm)= 3’ w(n)w(n)
n, = V; n; = VAV,
any =V o=

where the primed summation has the restriction that n, + n, has a subgraph
s with ds = V,. (A is the usual symmetric difference.)

We now turn to the proof. Consider
Z4(<°i°j“k°1> — £0,0:)<0,0,) — 0,0,.){0;0;) ~ {0,0,){5;0,)
+ 2<0i0m><()}om><akom><alam>)
= (@ ((FK)(@) = (KD = (i) (1) = (1))
+ 2(im)(jm) (k) (Im)
= @)((k)(@) = (C() 2| {i k1 },8) = (C() D k| {i: jiki 1), ¢)
—(C()3 I[{h,jk.1),4))
+2(C())3 m| (i, j},9)(C(K) 2 m] (k.1 }.9)
by Lemma 2 4
= =2($)(C(1) 2 ).k 1| {ix ).k, 1}, 9)
+2(C(0) 2 m| (i, j}.9)(C(k) 2 m]| (k.1 },9) @.1)
(2.1) follows from the observation that by flux conservation C, ., (7)
contains either exactly one of the sites j, k,/ or all three of them. In the first

case we have an exact cancellation and in the second we are left with
—2)(C@H) D j, k1| {i, j.k,I},$). Using Lemma 2, (2.1) may be written

=2$)(C() 2 k| {ij}s (k1))
+2(CGE) 2 m| (i, j),e)(C(k)D m|{k,1},9)
= 2¢)’(C() 2 k| {1, j}, {k,1})
=2 C@) B m| (i, j} $)(K )($)
= 2(C(i) 3 m| {i, j},)(C(k) Z m|{k.1},4)
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by adding and subtracting 2(({))2({:]')(161 )
= —2(6)(C()) B m, C(1)3 k or | (i, j},¢)(K])

= 2$)(C() 2 mk 1| (i, ]}, 6)(KD)
+2)(C() 7 m k| {1, )} (ko 1})
— 2(im)(jm)(C(K) B m, C(K) 3 i or | (K1}, )
= 2im)(jm)(C(k) 2 m,i, j| {k.1},9)
+29)(C() 2k C(1) 2 m| (i, j}, (k1)

where we have again used Lemma 2

= —2(¢)(C(i) Zm, C(i)2 kor 7] {i,]}>9)(Kl)

_ 2@)%,(@(1-) =A|{i,j}:9) ()5 (@) (<00 — {00, 77)
— 2(>im)(jm)(C(k) Z m, C(k) D iorj|{k,1},0)
—257(C7 () = Bl (k1 ),9) (9)5:(9)’

X (£0;0,,)€;0,,) ~ {6,0,,)5:{;0,,,) ) (22
where the single-primed summation is over connected sets of bonds A4 sucl
that 7 and j belong to at least one of the bonds and m, k, and / belong t«
none of them. The double-primed summation is over connected sets o
bonds B such that £ and / belong to at least one of the bonds and m, i, anc
j belong to none of them. We have used Lemma 2 in the last term.

The GKS inequalities*'> imply that (6,0,> — {6,0,>7- > 0 and henc
(2.2) is not larger than

~2(9)(C(i) 2 m, C(i) 3 k or 1] (i, ), $)(KT)
= 2im)(jm)(C(k) 2 m, C(k) 3 i or ] (k[ },5)
< =26)(C(0) 2 m| (i,k), (k. j))(Kl)
— 2(im)(jm)(C(K) 2 m| {k,i}, {i,1})
using Lemma 2
< —2(kl)
(¢)
= 2(im)(jm)
(4)°
by Lemma 1.

(C@yZm|{i.k},o)(C(k)Z m| (k. j}.9)

(CkyZm|{k.i},0)(C(D)Z m|{i,]},¢)
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Since (C({) Z m| {i,k}, ¢) = (ik)(¢) — (im)(km) by Lemma 2, Theorem

1 follows by dividing by Z*.
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