An Improvement of the Griffiths-Hurst-Sherman Inequality for the Ising Ferromagnet

Ross Graham^{1,2,3}

Received March 11, 1982

We prove the following inequality for the truncated correlation in the Ising model in zero external field:

$$\begin{split} &\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle \\ &\leqslant -2\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{k}\sigma_{m}\rangle\langle \sigma_{l}\sigma_{m}\rangle \\ &\qquad -2(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)(\langle \sigma_{j}\sigma_{k}\rangle - \langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)\langle \sigma_{k}\sigma_{l}\rangle \\ &\qquad -2\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)(\langle \sigma_{i}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{l}\rangle) \end{split}$$

This inequality is a strengthening of the Lebowitz inequality for the four-point function and implies the following improvement of the GHS inequality:

$$\langle \sigma_i; \sigma_j; \sigma_k \rangle^T \leq -2 \langle \sigma_i; \sigma_k \rangle^T \langle \sigma_j; \sigma_k \rangle^T \langle \sigma_k \rangle$$

This in turn implies the critical exponent inequality

$$\Delta_3' \geqslant \gamma' - \beta$$

KEY WORDS: Correlation inequalities; Ising model.

1. INTRODUCTION

We consider an Ising model with spins $\sigma_i = \pm 1$ on sites i = 1, ..., N and Hamiltonian

$$-H = \sum_{1 \leqslant i < j \leqslant N} J_{ij} \sigma_i \sigma_j \tag{1.1}$$

¹ Program in Applied Mathematics, Princeton University, Princeton, New Jersey 08544.

² NSERC Postgraduate Fellow, 1978–1981. Research supported in part by NSF Grant No. PHY-78-25390-A02.

³ Present address: Defense Research Establishment Atlantic, P.O. Box 1012, Dartmouth, Nova Scotia, Canada B2Y 3Z7.

186 Graham

with $J_{ii} \ge 0$. The partition function

$$Z = \frac{1}{2^N} \sum_{\sigma_i = \pm 1} e^{-\beta H}$$

where β is the inverse temperature and expectations are defined by

$$\langle \cdot \rangle = \frac{1}{2^N} \sum_{\sigma_i = \pm 1} (\cdot) e^{-\beta H} / Z$$
 (1.2)

Our main result is the following.

Theorem 1. Let $J_{ij} \ge 0$ in (1.1). Then for all m

$$\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle$$

$$\leq -2\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{k}\sigma_{m}\rangle\langle \sigma_{l}\sigma_{m}\rangle$$

$$-2(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)(\langle \sigma_{j}\sigma_{k}\rangle - \langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)\langle \sigma_{k}\sigma_{l}\rangle$$

$$-2\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{k}\rangle)(\langle \sigma_{i}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{m}\sigma_{l}\rangle)$$

$$(1.3)$$

Remark. Above the critical temperature, the expression $\langle \sigma_i \sigma_j \sigma_k \sigma_l \rangle - \langle \sigma_i \sigma_j \rangle \langle \sigma_k \sigma_l \rangle - \langle \sigma_i \sigma_k \rangle \langle \sigma_j \sigma_l \rangle - \langle \sigma_i \sigma_l \rangle \langle \sigma_j \sigma_k \rangle$ is the fourth Ursell function or truncated four-point function. Aizenman has recently shown⁽¹⁾ that

$$\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle$$

$$\geqslant -2\sum_{m}\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{k}\sigma_{m}\rangle\langle \sigma_{l}\sigma_{m}\rangle$$

and used this result to show that in greater than four dimensions hyperscaling does not hold for the Ising model, and the continuum limit of ϕ^4 lattice models is a free field. Theorem 1 provides the complementary bound

$$\langle \sigma_i \sigma_j \sigma_k \sigma_l \rangle - \langle \sigma_i \sigma_j \rangle \langle \sigma_k \sigma_l \rangle - \langle \sigma_i \sigma_k \rangle \langle \sigma_j \sigma_l \rangle - \langle \sigma_i \sigma_l \rangle \langle \sigma_j \sigma_k \rangle$$

$$\leq -2 \langle \sigma_i \sigma_m \rangle \langle \sigma_j \sigma_m \rangle \langle \sigma_k \sigma_m \rangle \langle \sigma_l \sigma_m \rangle$$
(1.4)

The relation of (1.4) to Aizenman's inequality is similar to the relation of Griffiths inequality⁽²⁾ $\langle \sigma_j \sigma_l \rangle \geq \langle \sigma_j \sigma_k \rangle \langle \sigma_k \sigma_l \rangle$ to Simon's inequality⁽³⁾ $\langle \sigma_j \sigma_l \rangle \leq \sum_{k \in K} \langle \sigma_j \sigma_k \rangle \langle \sigma_k \sigma_l \rangle$, where K is a set of sites that separates j from l.

I am grateful to Alan Sokal for suggesting (1.4) to me.

Theorem 1 implies improvements of several known inequalities. Taking m to be Griffiths "ghost" spin⁽²⁾ we get the following.

Corollary 1. Consider an Ising model with Hamiltonian

$$-H = \sum_{1 \leqslant i < j \leqslant N} J_{ij} \sigma_i \sigma_j + \sum_{i=1}^N h_i \sigma_i$$

where $J_{ii} \ge 0$, $h_i \ge 0$. We have

$$\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle$$

$$\leq -2\langle \sigma_{i}\rangle\langle \sigma_{j}\rangle\langle \sigma_{k}\rangle\langle \sigma_{l}\rangle - 2\langle \sigma_{i};\sigma_{k}\rangle^{T}\langle \sigma_{j};\sigma_{k}\rangle^{T}\langle \sigma_{k}\sigma_{l}\rangle$$

$$-2\langle \sigma_{i}\rangle\langle \sigma_{j}\rangle\langle \sigma_{i};\sigma_{k}\rangle^{T}\langle \sigma_{i};\sigma_{l}\rangle^{T}$$

where by definition $\langle \sigma_i; \sigma_k \rangle^T \equiv \langle \sigma_i \sigma_k \rangle - \langle \sigma_i \rangle \langle \sigma_k \rangle$. Corollary 1 strengthens the Lebowitz inequality for the four-point function. (4-6)

If we take m = l in (1.3) we get the following.

Corollary 2. Let $J_{ii} \ge 0$ in (1.1). Then

$$\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle$$

$$\leq -2\langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{l}\rangle\langle \sigma_{k}\sigma_{l}\rangle$$

$$-2(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{l}\sigma_{k}\rangle)(\langle \sigma_{i}\sigma_{k}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{l}\sigma_{k}\rangle)\langle \sigma_{k}\sigma_{l}\rangle$$
(1.5)

This strengthens a result of GHS.⁽⁷⁾

If in (1.5) we now let l be the "ghost" spin we have the following improvement of the GHS inequality.⁽⁷⁾

Corollary 3. Consider an Ising model with Hamiltonian

$$-H = \sum_{1 \leqslant i < j \leqslant N} J_{ij} \sigma_i \sigma_j + \sum_{i=1}^N h_i \sigma_i$$

where $J_{ij} \ge 0$, $h_i \ge 0$. We have

$$\langle \sigma_i; \sigma_j; \sigma_k \rangle^T \leq -2 \langle \sigma_i; \sigma_k \rangle^T \langle \sigma_j; \sigma_k \rangle^T \langle \sigma_k \rangle$$
 (1.6)

As usual $\langle \sigma_i; \sigma_j; \sigma_k \rangle^T \equiv \langle \sigma_i \sigma_j \sigma_k \rangle - \langle \sigma_i \rangle \langle \sigma_j \sigma_k \rangle - \langle \sigma_j \rangle \langle \sigma_i \sigma_k \rangle - \langle \sigma_k \rangle \langle \sigma_j \sigma_i \rangle + 2 \langle \sigma_i \rangle \langle \sigma_j \rangle \langle \sigma_k \rangle.$

We now investigate some of the consequences of Corollary 3. Consider an Ising model in a uniform positive external field h, and let $m_k(h)$ denote the magnetization at site k. If we sum (1.6) over i and j we have

$$\frac{\partial^2 m_k(h)}{\partial h^2} + 2 \left[\frac{\partial m_k(h)}{\partial h} \right]^2 m_k(h) \leq 0$$

By the "fluctuation-dissipation" relations we have in the thermodynamic limit

$$\frac{\partial^2 m}{\partial h^2} + 2\left(\frac{\partial m}{\partial h}\right)^2 m \le 0 \tag{1.7}$$

⁴ For full justification of the fluctuation-dissipation relations, see for example, Sokal.⁽⁸⁾ Other treatments are given by Fisher,⁽⁹⁾ Sylvester,⁽¹⁰⁾ and Lebowitz.⁽¹¹⁾

188 Graham

(1.7) may be integrated twice to yield the following implicit bound on m(h) in terms of $m_0 \equiv \lim_{h\to 0+} m(h)$ and $\chi_0 \equiv \lim_{h\to 0+} (\partial m/\partial h)(h)$.

Theorem 2. Let m(h) denote the magnetization of an infinite volume Ising model in a uniform magnetic field h > 0. We have

$$\int_{m_0}^{m(h)} e^{y^2} dy \le e^{m_0^2} \chi_0 h \tag{1.8}$$

Proof. Since $\partial m/\partial h$ is positive we can write (1.7) as

$$\frac{d}{dh}\left(\ln\frac{\partial m}{\partial h} + m^2\right) \le 0 \quad \text{which implies} \quad \ln\frac{\partial m}{\partial h} + m^2 \le \ln\chi_0 + m_0^2$$

Exponentiating and integrating from 0 to h we get (1.7)

(1.7) also implies a critical exponent inequality. Writing $f(x) \sim x^{\lambda}$ to mean $\lim_{x\to 0+} [\log f(x)/\log x]$ exists and equals λ we assume for $\beta>\beta_c$ $(T< T_c)$ and h=0+ (the plus state) that $M\sim (\beta-\beta_c)^{\beta}$

$$\frac{\partial m}{\partial h} \equiv \chi \sim (\beta - \beta_c)^{-\gamma'}$$

$$\left| \frac{\partial^2 m}{\partial h^2} \right| \sim (\beta - \beta_c)^{-\gamma' - \Delta_3'} \tag{1.9}$$

(The exponent β is not to be confused with the inverse temperature β .) See Stanley⁽¹²⁾ or Sokal⁽⁸⁾ for more complete lists of critical exponents.

(1.9) together with (1.7) imply immediately the following.

Theorem 3. Let β , γ' and Δ'_3 be defined as in (1.9). Then

$$\Delta_3' \geqslant \gamma' - \beta \tag{1.10}$$

Remark. (1.10) may also be written $\Delta_3' \ge \Delta_2' - 2\beta$. Numerical studies for the two-dimensional Ising model indicate $\Delta_3' \approx 15/8$, $\Delta_2' \approx 15/8$ while $\beta = 1/8$ is a rigorous result.⁽¹³⁾ Hence in this case (1.10) reduces to $15/8 \ge 13/8$.

2. PROOF OF THEOREM 1

Without loss, we set $\beta = 1$. The proof is based on graphical methods. We refer the reader to Ref. 14 for notation and the proof of the following lemma.

Lemma 1. Let $J_{ii} \ge 0$ in (1.1). Then

$$(C(k) \not\ni 0 \mid \{j,k\}, \{k,l\})(\phi)^{2}$$

$$\geq (C(k) \not\ni 0 \mid \{j,k\}, \phi)(C(k) \not\ni 0 \mid \{k,l\}, \phi)$$

The other ingredient we will need is the following result of GHS [7].

Lemma 2. Let V_1 and V_2 be sets of sites. Then

$$\sum_{\substack{\partial \mathbf{n}_1 = V_1 \\ \partial \mathbf{n}_2 = V_2}} w(\mathbf{n}_1) w(\mathbf{n}_2) = \sum_{\substack{\partial \mathbf{n}_1 = V_1 \Delta V_2 \\ \partial \mathbf{n}_2 = \phi}} w(\mathbf{n}_1) w(\mathbf{n}_2)$$

where the primed summation has the restriction that $\mathbf{n}_1 + \mathbf{n}_2$ has a subgraph s with $\partial \mathbf{s} = V_2$. (Δ is the usual symmetric difference.)

We now turn to the proof. Consider

$$Z^{4}(\langle \sigma_{i}\sigma_{j}\sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{j}\rangle\langle \sigma_{k}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{k}\rangle\langle \sigma_{j}\sigma_{l}\rangle - \langle \sigma_{i}\sigma_{l}\rangle\langle \sigma_{j}\sigma_{k}\rangle$$

$$+ 2\langle \sigma_{i}\sigma_{m}\rangle\langle \sigma_{j}\sigma_{m}\rangle\langle \sigma_{k}\sigma_{m}\rangle\langle \sigma_{l}\sigma_{m}\rangle)$$

$$= (\phi)^{2}((ijkl)(\phi) - (ij)(kl) - (ik)(jl) - (il)(jk))$$

$$+ 2(im)(jm)(km)(lm)$$

$$= (\phi)^{2}((ijkl)(\phi) - (C(i) \ni j \mid \{i, j, k, l\}, \phi) - (C(i) \ni k \mid \{i, j, k, l\}, \phi)$$

$$- (C(i) \ni l \mid \{i, j, k, l\}, \phi))$$

$$+ 2(C(i) \ni m \mid \{i, j\}, \phi)(C(k) \ni m \mid \{k, l\}, \phi)$$

by Lemma 2

$$= -2(\phi)^{2}(C(i) \ni j, k, l \mid \{i, j, k, l\}, \phi) + 2(C(i) \ni m \mid \{i, j\}, \phi)(C(k) \ni m \mid \{k, l\}, \phi)$$
 (2.1)

(2.1) follows from the observation that by flux conservation $C_{n_1+n_2}(i)$ contains either exactly one of the sites j, k, l or all three of them. In the first case we have an exact cancellation and in the second we are left with $-2(\phi)^2(C(i) \ni j, k, l \mid \{i, j, k, l\}, \phi)$. Using Lemma 2, (2.1) may be written

$$-2(\phi)^{2}(C(i) \ni k \mid \{i, j\}, \{k, l\})$$

$$+2(C(i) \ni m \mid \{i, j\}, \phi)(C(k) \ni m \mid \{k, l\}, \phi)$$

$$=2(\phi)^{2}(C(i) \not\ni k \mid \{i, j\}, \{k, l\})$$

$$-2(C(i) \not\ni m \mid \{i, j\}, \phi)(kl)(\phi)$$

$$-2(C(i) \ni m \mid \{i, j\}, \phi)(C(k) \not\ni m \mid \{k, l\}, \phi)$$

190 Grahan

by adding and subtracting $2(\phi)^2(ij)(kl)$

$$= -2(\phi)(C(i) \not\ni m, C(i) \ni k \text{ or } l \mid \{i, j\}, \phi)(kl)$$

$$-2(\phi)(C(i) \not\ni m, k, l \mid \{i, j\}, \phi)(kl)$$

$$+2(\phi)^{2}(C(i) \not\ni m, k \mid \{i, j\}, \{k, l\})$$

$$-2(im)(jm)(C(k) \not\ni m, C(k) \ni i \text{ or } j \mid \{k, l\}, \phi)$$

$$-2(im)(jm)(C(k) \not\ni m, i, j \mid \{k, l\}, \phi)$$

$$+2(\phi)^{2}(C(i) \not\ni k, C(i) \ni m \mid \{i, j\}, \{k, l\})$$

where we have again used Lemma 2

$$= -2(\phi)(C(i) \not\ni m, C(i) \ni k \text{ or } l \mid \{i, j\}, \phi)(kl)$$

$$-2(\phi) \sum_{A} {C^{b}(i) \equiv A \mid \{i, j\}, \phi}_{A}(\phi)^{2}_{\overline{A}^{c}}(\phi)(\langle \sigma_{k} \sigma_{l} \rangle - \langle \sigma_{k} \sigma_{l} \rangle_{\overline{A}^{c}})$$

$$-2(im)(jm)(C(k) \not\ni m, C(k) \ni i \text{ or } j \mid \{k, l\}, \phi)$$

$$-2 \sum_{B} {C^{b}(k) \equiv B \mid \{k, l\}, \phi}_{B}(\phi)^{2}_{\overline{B}^{c}}(\phi)^{2}$$

$$\times (\langle \sigma_{i} \sigma_{m} \rangle \langle \sigma_{i} \sigma_{m} \rangle - \langle \sigma_{i} \sigma_{m} \rangle_{\overline{B}^{c}} \langle \sigma_{i} \sigma_{m} \rangle_{\overline{B}^{c}})$$
(2.2)

where the single-primed summation is over connected sets of bonds A such that i and j belong to at least one of the bonds and m, k, and l belong to none of them. The double-primed summation is over connected sets o bonds B such that k and l belong to at least one of the bonds and m, i, and j belong to none of them. We have used Lemma 2 in the last term.

The GKS inequalities^(2,15) imply that $\langle \sigma_k \sigma_l \rangle - \langle \sigma_k \sigma_l \rangle_{\overline{A}^c} \ge 0$ and henc (2.2) is not larger than

$$-2(\phi)(C(i) \not\ni m, C(i) \ni k \text{ or } l \mid \{i, j\}, \phi)(kl)$$

$$-2(im)(jm)(C(k) \not\ni m, C(k) \ni i \text{ or } j \mid \{k, l\}, \phi)$$

$$\leq -2(\phi)(C(i) \not\ni m \mid \{i, k\}, \{k, j\})(kl)$$

$$-2(im)(jm)(C(k) \not\ni m \mid \{k, i\}, \{i, l\})$$

using Lemma 2

$$\leq \frac{-2(kl)}{(\phi)} (C(i) \not\ni m \mid \{i, k\}, \phi) (C(k) \not\ni m \mid \{k, j\}, \phi)$$
$$\frac{-2(im)(jm)}{(\phi)^2} (C(k) \not\ni m \mid \{k, i\}, \phi) (C(i) \not\ni m \mid \{i, l\}, \phi)$$

by Lemma 1.

Since $(C(i) \not\ni m \mid \{i, k\}, \phi) = (ik)(\phi) - (im)(km)$ by Lemma 2, Theorem 1 follows by dividing by Z^4 .

ACKNOWLEDGMENT

I would like to thank Michael Aizenman for useful discussions and encouragement and Alan Sokal for some fruitful remarks.

REFERENCES

- M. Aizenman, Phys. Rev. Lett. 47:1 (1981), and Geometric analysis of φ⁴ fields and Ising models, to appear in Commun. Math. Phys.
- 2. R. Griffiths, J. Math. Phys. 8:484 (1967).
- 3. B. Simon, Commun. Math. Phys. 77:111 (1980).
- 4. J. L. Lebowitz, Commun. Math. Phys. 35:87 (1974).
- 5. G. S. Sylvester, J. Stat. Phys. 15:327 (1976).
- 6. R. S. Ellis, J. L. Monroe, and C. M. Newman, Commun. Math. Phys. 46:167 (1976).
- 7. R. Griffiths, C. Hurst, and S. Sherman, J. Math. Phys. 11:790 (1970).
- 8. A. D. Sokal, J. Stat. Phys. 25:25 (1981).
- 9. M. E. Fisher, Phys. Rev. 180:594 (1969).
- 10. G. S. Sylvester, Continuous-spin Ising ferromagnets, MIT thesis (1976), Chap. V.
- 11. J. L. Lebowitz, Commun. Math. Phys. 28:313 (1972).
- 12. H. E. Stanley, *Introduction to Phase Transitions and Critical Phenomena* (Oxford University Press, Oxford, England, 1971).
- 13. A. Martin-Löf, Commun. Math. Phys. 24:253 (1972).
- 14. R. Graham, J. Stat. Phys. 29:177 (1982).
- 15. D. G. Kelly and S. Sherman, J. Math. Phys. 9:466 (1968).